I. RESVERATROL AND ITS ROLE IN CARDIOVASCULAR, CHRONIC DISEASES AND ANTI-INFLAMMATORY ACTIVITY
Tomé-Carneiro J., Gonzálvez M., Larrosa M., Yáñez-Gascón M.J., García-Almagro F.J., Ruiz-Ros J.A., Tomás-Barberán F.A., García-Conesa M.T., Espín J.C. Grape resveratrol increases serum adiponectin and downregulates inflammatory genes in peripheral blood mononuclear cells: A triple-blind, placebo-controlled, one-year clinical trial in patients with stable coronary artery disease. Cardiovasc. Drugs Ther. 2013;27:37–48.
https://pubmed.ncbi.nlm.nih.gov/23224687/
Lee SJ, Choi SK and Seo JS, Grape skin improves antioxidant capacity in rats fed a high fat diet. Nutr Res Pract 3:279–285 (2009). https://pubmed.ncbi.nlm.nih.gov/20098580/
Rahman I., Biswas S.K., Kirkham P.A. Regulation of inflammation and redox signaling by dietary polyphenols. Biochem. Pharmacol. 2006;72:1439–1452. https://pubmed.ncbi.nlm.nih.gov/16920072/
Agarwal B., Campen M.J., Channell M.M., Wherry S.J., Varamini B., Davis J.G., Baur J.A., Smoliga J.M. Resveratrol for primary prevention of atherosclerosis: Clinical trial evidence for improved gene expression in vascular endothelium. Int. J. Cardiol. 2012;8:9–11.
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3646959/
Borriello A., Cucciolla V., Della Ragione F., Galletti P. Dietary polyphenols: Focus on resveratrol, a promising agent in the prevention of cardiovascular diseases and control of glucose homeostasis. Nutr. Metab. Cardiovasc. Dis. 2010;20:618–625.
https://pubmed.ncbi.nlm.nih.gov/20850033/
Cao Z., Li Y. Potent induction of cellular antioxidants and phase 2 enzymes by resveratrol in cardiomyocytes: Protection against oxidative and electrophilic injury. Eur. J. Pharmacol. 2004;489:39–48.
https://pubmed.ncbi.nlm.nih.gov/15063153/
Ungvari Z., Bagi Z., Feher A., Recchia F.A., Sonntag W.E., Pearson K., de Cabo R., Csiszar A. Resveratrol confers endothelial protection via activation of the antioxidant transcription factor Nrf2. Am. J. Physiol. Heart Circ. Physiol. 2010;299:H18–H24.
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2904129/
Baur J.A., Sinclair D.A. Therapeutic potential of resveratrol: The in vivo evidence. Nat. Rev. Drug Dis. 2006;5:493–506.
https://pubmed.ncbi.nlm.nih.gov/16732220/
Csiszar A. Anti-inflammatory effects of resveratrol: Possible role in prevention of age-related cardiovascular disease. Ann. N. Y. Acad. Sci. 2011;1215:117–122.
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3058481/
Chung S., Yao H., Caito S., Hwang J.W., Arunachalam G., Rahman I. Regulation of SIRT1 in cellular functions: Role of polyphenols. Arch. Biochem. Biophys. 2010;501:79–90.
https://pubmed.ncbi.nlm.nih.gov/20450879/
Zang M., Xu S., Maitland-Toolan K.A., Zuccollo A., Hou X., Jiang B., Wierzbicki M., Verbeuren T.J., Cohen R.A. Polyphenols stimulate AMP-activated protein kinase, lower lipids, and inhibit accelerated atherosclerosis in diabetic LDL receptor-deficient mice. Diabetes. 2006;55:2180–2191.
https://pubmed.ncbi.nlm.nih.gov/16873680/
Wong R.H.X., Howe P.R.C., Buckley J.D., Coates A.M., Kunz I., Berry N.M. Acute resveratrol supplementation improves flow-mediated dilatation in overweight/obese individuals with mildly elevated blood pressure. Nutr. Metab. Cardiovasc. Dis. 2011;21:851–856.
https://pubmed.ncbi.nlm.nih.gov/20674311/
Shakibaei, M.; John, T.; Seifarth, C.; Mobasheri, A. Resveratrol inhibits IL-1beta-induced stimulation of caspase-3 and cleavage of PARP in human articular chondrocytes in vitro. Ann. N. Y. Acad. Sci 2007, 1095, 554–563.
https://pubmed.ncbi.nlm.nih.gov/17404069/
Donnelly, L.E.; Newton, R.; Kennedy, G.E.; Fenwick, P.S.; Leung, R.H.; Ito, K.; Russell, R.E.; Barnes, P.J. Anti-inflammatory effects of resveratrol in lung epithelial cells: molecular mechanisms. Am. J. Physiol. Lung Cell Mol. Physiol 2004, 287, L774–L783.
https://pubmed.ncbi.nlm.nih.gov/15180920/
Bertelli, A.A.A.; Das, D.K. Grapes, wines, resveratrol, and heart health. J. Cardiovasc. Pharmacol. 2009, 54, 468–476.
https://pubmed.ncbi.nlm.nih.gov/19770673/
Smoliga J.M., Baur J.A., Hausenblas H.A. Resveratrol and health—A comprehensive review of human clinical trials. Mol. Nutr. Food Res. 2011;55:1129–1141.
https://pubmed.ncbi.nlm.nih.gov/21688389/
ii. FLAVONOIDS AND TANNINS: THEIR ROLE IN CARDIOVASCULAR, CHRONIC DISEASES AND ANTI-INFLAMMATORY ACTIVITY
Wallace T.C. Anthocyanins in cardiovascular disease. Adv. Nutr. Int. Rev. J. 2011;2:1–7.
https://pubmed.ncbi.nlm.nih.gov/22211184/
Freedman J.E., Parker C., Li L., Perlman J.A., Frei B., Ivanov V., Deak L.R., Iafrati M.D., Folts J.D. Select flavonoids and whole juice from purple grapes inhibit platelet function and enhance nitric oxide release. Circulation. 2001;103:2792–2798. https://pubmed.ncbi.nlm.nih.gov/11401934/
Vauzour D., Rodriguez-Mateos A., Corona G., Oruna-Concha M.J., Spencer J.P.E. Polyphenols and human health: Prevention of disease and mechanisms of action. Nutrients. 2010;2:1106–1131.
https://pubmed.ncbi.nlm.nih.gov/22254000/
N. Martinez-Micaelo, N. González-Abuín, A. Ardèvol, M. Pinent, M.T. Blay. Procyanidins and inflammation: Molecular targets and health implications Biofactors, 38 (4) (2012), pp. 257-265. https://pubmed.ncbi.nlm.nih.gov/22505223/
Edwards R.L., Lyon T., Litwin S.E., Rabovsky A., Symons J.D., Jalili T. Quercetin reduces blood pressure in hypertensive subjects. J. Nutr. 2007;137:2405–2411. https://pubmed.ncbi.nlm.nih.gov/17951477/
Yilmaz, Y.; Toledo, R.T. Major flavonoids in grape seeds and skins: Antioxidant capacity of catechin, epicatechin, and gallic acid. J. Agric. Food Chem. 2004, 52, 255–260. https://pubmed.ncbi.nlm.nih.gov/14733505/
Egert S., Bosy-Westphal A., Seiberl J., Kurbitz C., Settler U., Plachta-Danielzik S., Wagner A.E., Frank J., Schrezenmeir J., Rimbach G., et al. Quercetin reduces systolic blood pressure and plasma oxidised low-density lipoprotein concentrations in overweight subjects with a high-cardiovascular disease risk phenotype: A double-blinded, placebo-controlled cross-over study. Br. J. Nutr. 2009;102:1065–1074. https://pubmed.ncbi.nlm.nih.gov/19402938/
Chirumbolo S. Role of quercetin in vascular physiology. Can. J. Physiol. Pharmacol. 2012;90:1652–1657.
https://pubmed.ncbi.nlm.nih.gov/23210445/
Khoo N.K., White C.R., Pozzo-Miller L., Zhou F., Constance C., Inoue T., Patel R.P., Parks D.A. Dietary flavonoid quercetin stimulates vasorelaxation in aortic vessels. Free Radic. Biol. Med. 2010;49:339–347.
https://pubmed.ncbi.nlm.nih.gov/20423726/
Monteiro M.M., Franca-Silva M.S., Alves N.F., Porpino S.K., Braga V.A. Quercetin improves baroreflex sensitivity in spontaneously hypertensive rats. Molecules. 2012;17:12997–13008. https://pubmed.ncbi.nlm.nih.gov/23117438/
Mosawy S., Jackson D.E., Woodman O.L., Linden M.D. Treatment with quercetin and 3′,4′-dihydroxyflavonol inhibits platelet function and reduces thrombus formation in vivo. J. Thromb. Thrombolysis. 2012;36:50–57.
https://pubmed.ncbi.nlm.nih.gov/23070586/
Leifert W.R., Abeywardena M.Y. Cardioprotective actions of grape polyphenols. Nutr. Res. 2008;28:729–737.
https://pubmed.ncbi.nlm.nih.gov/19083481/
De Lange D.W., Verhoef S., Gorter G., Kraaijenhagen R.J., van de Wiel A., Akkerman J.W. Polyphenolic grape extract inhibits platelet activation through PECAM-1: An explanation for the French paradox. Alcohol. Clin. Exp. Res. 2007;31:1308–1314. https://pubmed.ncbi.nlm.nih.gov/17559545/
Falchi M., Bertelli A., Lo Scalzo R., Morassut M., Morelli R., Das S., Cui J., Das D.K. Comparison of cardioprotective abilities between the flesh and skin of grapes. J. Agric. Food Chem. 2006;54:6613–6622.
https://pubmed.ncbi.nlm.nih.gov/16939317/
De Pascual-Teresa S., Moreno D.A., García-Viguera C. Flavanols and anthocyanins in cardiovascular health: A review of current evidence. Int. J. Mol. Sci. 2010;11:1679–1703. https://pubmed.ncbi.nlm.nih.gov/20480037/
Freedman J.E., Parker C., Li L., Perlman J.A., Frei B., Ivanov V., Deak L.R., Iafrati M.D., Folts J.D. Select flavonoids and whole juice from purple grapes inhibit platelet function and enhance nitric oxide release. Circulation. 2001;103:2792–2798. https://pubmed.ncbi.nlm.nih.gov/11401934/
McCullough M., Peterson J. Flavonoid intake and cardiovascular disease mortality in a prospective cohort of US adults. Am. J. Clin. Nutr. 2012;95:454–464. doi: 10.3945/ajcn.111.016634.
https://pubmed.ncbi.nlm.nih.gov/22218162/
Bondonno NP, Liu YL, Zheng Y, Ivey K, Willett WC, Stampfer MJ, Rimm EB, Cassidy A. Change in habitual intakes of flavonoid-rich foods and mortality in US males and females. BMC Med. 2023 May 12;21(1):181
https://pubmed.ncbi.nlm.nih.gov/37173745/
Z. Pons, L. Guerrero, M. Margalef, L. Arola, A. Arola-Arnal, B. Muguerza. Effect of low molecular grape seed proanthocyanidins on blood pressure and lipid homeostasis in cafeteria diet-fed rats. Journal of Physiology and Biochemistry, 70 (2) (2014), pp. 629-637
https://pubmed.ncbi.nlm.nih.gov/24610672/
D.A. Moreno, N. Ilic, A. Poulev, D.L. Brasaemle, S.K. Fried, I. Raskin. Inhibitory effects of grape seed extract on lipases. Nutrition, 19 (10) (2003), pp. 876-879. https://pubmed.ncbi.nlm.nih.gov/14559324/
M.-H. Oak, C. Auger, E. Belcastro, S.-H. Park, H.-H. Lee, V.B. Schini-Kerth. Potential mechanisms underlying cardiovascular protection by polyphenols: Role of the endothelium. Free Radical Biology and Medicine (2018)
https://pubmed.ncbi.nlm.nih.gov/29548794/
E. Park, I. Edirisinghe, Y.Y. Choy, A. Waterhouse, B. Burton-Freeman. Effects of grape seed extract beverage on blood pressure and metabolic indices in individuals with pre-hypertension: A randomised, double-blinded, two-arm, parallel, placebo-controlled trial. British Journal of Nutrition, 115 (2) (2016), pp. 226-238
https://pubmed.ncbi.nlm.nih.gov/26568249/
Chuang CC, Bumrungpert A, Kennedy A, Overman A, West T, Dawson B, McIntosh MK. Grape powder extract attenuates tumor necrosis factor α-mediated inflammation and insulin resistance in primary cultures of human adipocytes. J Nutr Biochem. 2011 Jan;22(1):89-94. https://pubmed.ncbi.nlm.nih.gov/20382011/
Chuang, C.C.; McIntosh, M.K. Potential mechanisms by which polyphenol-rich grapes prevent obesity-mediated inflammation and metabolic diseases. Ann. Rev. Nutr. 2011, 31, 155–176.
https://pubmed.ncbi.nlm.nih.gov/21548775/
Chuang, C.-C.; Shen, W.; Chen, H.; Xie, G.; Jia, W.; Chung, S.; McIntosh, M.K. Differential effects of grape powder and its extract on glucose tolerance and chronic inflammation in high-fat-fed obese mice. J. Agric. Food Chem. 2012, 60, 12458–12468. https://pubmed.ncbi.nlm.nih.gov/23210691/
Alzand, K.I.; Mohamed, M.A. Flavonoids: Chemistry, biochemistry and antioxidant activity. J. Pharm. Res. 2012, 5, 4013–4012.
https://www.researchgate.net/publication/320957444
iii. GRAPE POLYPHENOLS IN NEUROPROTECTION
El Gaamouch, F.; Liu, K.; Lin, h.; Wu, C.; Wang, J. Development of grape polyphenols as multi-targeting strategies for Alzheimer’s disease. Neurochemistry International Volume 147, July 2021, 105046.
https://pubmed.ncbi.nlm.nih.gov/33872681/
Bastianetto, S.; Brouillette, J.; Quirion, R. Neuroprotective effects of natural products: interaction with intracellular kinases, amyloid peptides and a possible role for transthyretin. Neurochem. Res 2007, in press.
https://pubmed.ncbi.nlm.nih.gov/17406978/
Okawara, M.; Katsuki, H.; Kurimoto, E.; Shibata, H.; Kume, T.; Akaike, A. Resveratrol protects dopaminergic neurons in midbrain slice culture from multiple insults. Biochem. Pharmacol 2007, 73, 550–560.
https://pubmed.ncbi.nlm.nih.gov/17147953/
Dasgupta, B.; Milbrandt, J. Resveratrol stimulates AMP kinase activity in neurons. Proc. Natl. Acad. Sci. U. S. A 2007, 104, 7217–7222.
https://pubmed.ncbi.nlm.nih.gov/17438283/
van Meeteren, M.E.; Hendriks, J.J.; Dijkstra, C.D.; van Tol, E.A. Dietary compounds prevent oxidative damage and nitric oxide production by cells involved in demyelinating disease. Biochem. Pharmacol 2004, 67, 967–975.
https://pubmed.ncbi.nlm.nih.gov/15104250/
Commenges D., Scotet V., Renaud S., Jacqmin-Gadda H., Barberger-Gateau P., Dartigues J.F. Intake of flavonoids and risk of dementia. Eur. J. Epidemiol. 2000;16:357–363.
https://pubmed.ncbi.nlm.nih.gov/10959944/
Spencer J.P. Food for thought: The role of dietary flavonoids in enhancing human memory, learning and neuro-cognitive performance. Proc. Nutr. Soc. 2008;67:238–252.
https://pubmed.ncbi.nlm.nih.gov/18412998/
Vauzour D., Vafeiadou K., Rodriguez-Mateos A., Rendeiro C., Spencer J.P. The neuroprotective potential of flavonoids: A multiplicity of effects. Genes Nutr. 2008;3:115–126.
IV. GRAPE POLYPHENOLS AND THEIR ANTI-CANCER PROPERTIES
A.A. Hamza, G.H. Heeba, H.M. Elwy, C. Murali, R. El-Awady, A. Amin. Molecular characterization of the grape seeds extract’s effect against chemically induced liver cancer: In vivo and in vitro analyses. Scientific Reports, 8 (1) (2018), p. 1270
https://pubmed.ncbi.nlm.nih.gov/29352129/
Sun, T.; Chen, Q.Y.; Wu, L.J.; Yao, X.M.; Sun, X.J. Antitumor and antimetastatic activities of grape skin polyphenols in a murine model of breast cancer. Food Chem. Toxicol. 2012, 50, 3462–3467
https://pubmed.ncbi.nlm.nih.gov/22871396/
Y.-C. Chung, C.-C. Huang, C.-H. Chen, H.-C. Chiang, K.-B. Chen, Y.-J. Chen, …, C.-P. Hsu. Grape-seed procyanidins inhibit the in vitro growth and invasion of pancreatic carcinoma cells. Pancreas, 41 (3) (2012), pp. 447-454
https://pubmed.ncbi.nlm.nih.gov/22015975/
Q. Chen, X.-F. Liu, P.-S. Zheng. Grape seed proanthocyanidins (GSPs) inhibit the growth of cervical cancer by inducing apoptosis mediated by the mitochondrial pathway. PLoS One, 9 (9) (2014), Article e107045
https://pubmed.ncbi.nlm.nih.gov/25187959/
Yoon, S.H.; Kim, Y.S.; Ghim, S.Y.; Song, B.H.; Bae, Y.S. Inhibition of protein kinase CKII activity by resveratrol, a natural compound in red wine and grapes. Life Sci 2002, 71, 2145–2152. https://pubmed.ncbi.nlm.nih.gov/12204772/
Kuo, P.L.; Chiang, L.C.; Lin, C.C. Resveratrol-induced apoptosis is mediated by p53-dependent pathway in HepG2 cells. Life Sci 2002, 72, 23–34. https://pubmed.ncbi.nlm.nih.gov/12409142/
Wolter, F.; Akoglu, B.; Clausnitzer, A.; Stein, J. Downregulation of the cyclin D1/Cdk4 complex occurs during resveratrol-induced cell cycle arrest in colon cancer cell lines. J. Nutr 2001, 131, 2197–2203.
https://pubmed.ncbi.nlm.nih.gov/11481417/
Bhat, K.P.; Lantvit, D.; Christov, K.; Mehta, R.G.; Moon, R.C.; Pezzuto, J.M. Estrogenic and antiestrogenic properties of resveratrol in mammary tumor models. Cancer Res 2001, 61, 7456–7463.
https://pubmed.ncbi.nlm.nih.gov/11606380/
Delmas D, Passilly-Degrace P, Jannin B, Cherkaoui Malki M, Latruffe N. Resveratrol, a chemopreventive agent, disrupts the cell cycle control of human SW480 colorectal tumor cells. Int J Mol Med. 2002 Aug;10(2):193-9.
https://pubmed.ncbi.nlm.nih.gov/12119558/
Dubuisson JG, Dyess DL, Gaubatz JW. Resveratrol modulates human mammary epithelial cell O-acetyltransferase, sulfotransferase, and kinase activation of the heterocyclic amine carcinogen N-hydroxy-PhIP. Cancer Lett. 2002 Aug 8;182(1):27-32
https://pubmed.ncbi.nlm.nih.gov/12175520/
Ong CS, Tran E, Nguyen TT, Ong CK, Lee SK, Lee JJ, Ng CP, Leong C, Huynh H. Quercetin-induced growth inhibition and cell death in nasopharyngeal carcinoma cells are associated with increase in Bad and hypophosphorylated retinoblastoma expressions. Oncol Rep. 2004;11(3):727–733.
https://pubmed.ncbi.nlm.nih.gov/14767529/
Gusman J, Malonne H, Atassi G. A reappraisal of the potential chemopreventive and chemotherapeutic properties of resveratrol. Carcinogenesis. 2001;22:1111–1117.
https://pubmed.ncbi.nlm.nih.gov/11470738/
Wolter F, Akoglu B, Clausnitzer A, Stein J. Downregulation of the cyclin D1/Cdk4 complex occurs during resveratrol-induced cell cycle arrest in colon cancer cell lines. J Nutr. 2001;131(8):2197–2203.
https://pubmed.ncbi.nlm.nih.gov/11481417/
Kim YA, Lee WH, Choi TH, Rhee SH, Park KY, Choi YH. Involvement of p21WAF1/CIP1, pRB, Bax and NF-kappaB in induction of growth arrest and apoptosis by resveratrol in human lung carcinoma A549 cells. Int J Oncol. 2003;23(4):1143–1149.
https://pubmed.ncbi.nlm.nih.gov/12963997/
Joe AK, Liu H, Suzui M, Vural ME, Xiao D, Weinstein IB. Resveratrol induces growth inhibition, S-phase arrest, apoptosis, and changes in biomarker expression in several human cancer cell lines. Clin Cancer Res. 2002;8(3):893–903.
https://pubmed.ncbi.nlm.nih.gov/11895924/
Kim YA, Choi BT, Lee YT, Park DI, Rhee SH, Park KY, Choi YH. Resveratrol inhibits cell proliferation and induces apoptosis of human breast carcinoma MCF-7 cells. Oncol Rep. 2004;11(2):441–446.
https://pubmed.ncbi.nlm.nih.gov/14719081/
Alkhalaf M. Resveratrol-Induced Apoptosis Is Associated with Activation of p53 and Inhibition of Protein Translation in T47D Human Breast Cancer Cells. Pharmacology. 2007;80(2–3):134–143.
https://pubmed.ncbi.nlm.nih.gov/17534123/
V. POLIFENOLES DE UVA Y SUS PROPIEDADES ANTIDIABETES
Kanti Bhooshan Pandey, Syed Ibrahim Rizvi. Role of red grape polyphenols as antidiabetic agents. Integrative Medicine Research. Volume 3, Issue 3, September 2014, Pages 119-125.
https://pubmed.ncbi.nlm.nih.gov/28664087/
T Szkudelski, K Szkudelska. Anti-diabetic effects of resveratrol. Ann N Y Acad Sci, 1215 (2011), pp. 34-39
https://pubmed.ncbi.nlm.nih.gov/21261639/
Kwon O, Eck P, Chen S, Corpe CP, Lee JH, Kruhlak M, Levine M. Inhibition of the intestinal glucose transporter GLUT2 by flavonoids. FASEB J. 2007 Feb;21(2):366-77
https://pubmed.ncbi.nlm.nih.gov/17172639/
Song, J.; Kwon, O.; Chen, S.; Daruwala, R.; Eck, P.; Park, J.B.; Levine, M. Flavonoid inhibition of SVCT1 and GLUT2, intestinal transporters for vitamin C and glucose. J. Biol. Chem 2002, 277, 15252–15260.
https://pubmed.ncbi.nlm.nih.gov/11834736/
Z Bahadoran, P Mirmiran, F Azizi. Dietary polyphenols as potential nutraceuticals in management of diabetes: a review. J Diabetes Metab Disord, 12 (2013), pp. 43-52
https://pubmed.ncbi.nlm.nih.gov/23938049/
KB Pandey, SI Rizvi. Plant polyphenols as dietary antioxidants in human health and disease. Oxid Med Cell Longev, 2 (2009), pp. 270-278
VI. GRAPE POLYPHENOLS AND THEIR ANTIBACTERIAL PROPERTIES
Anastasiadi, M.; Chorianopoulos, N.G.; Nychas, G.-J.E.; Haroutounian, S.A. Antilisterial activities of polyphenol-rich extracts of grapes and vinification byproducts. J. Agric. Food Chem. 2009, 57, 457–463.
https://pubmed.ncbi.nlm.nih.gov/19105651/
C. Badet. Chapter 65 – Antibacterial Activity of Grape (Vitis vinifera, Vitis rotundifolia) Seeds V.R. Preedy, R.R. Watson, V.B. Patel (Eds.), nuts and seeds in health and disease prevention, Academic Press, San Diego (2011), pp. 545-552
https://www.researchgate.net/publication/288085445
Z. Ghouila, S. Laurent, S. Boutry, L. Vander Elst, F. Nateche, R. Muller, A. Baaliouamer. Antioxidant, antibacterial and cell toxicity effects of polyphenols Fromahmeur bouamer grape seed extracts. Journal of Fundamental and Applied Sciences, 9 (1) (2017), pp. 392-420
https://www.researchgate.net/publication/313495149
N.G. Baydar, O. Sagdic, G. Ozkan, S. Cetin. Determination of antibacterial effects and total phenolic contents of grape (Vitis vinifera L.) seed extracts. International Journal of Food Science & Technology, 41 (7) (2006), pp. 799-804
https://www.researchgate.net/publication/227742954
M. Anastasiadi, N.G. Chorianopoulos, G.-J.E. Nychas, S.A. Haroutounian. Antilisterial activities of polyphenol-rich extracts of grapes and vinification byproducts. Journal of Agricultural and Food Chemistry, 57 (2) (2008), pp. 457-463
https://pubmed.ncbi.nlm.nih.gov/19105651/
Jayaprakasha, G.K.; Selvi, T.; Sakariah, K.K. Antibacterial and antioxidant activities of grape (Vitis vinifera) seed extracts. Food Res. Int. 2003, 36, 117–122.
https://www.sciencedirect.com/science/article/abs/pii/S0963996902001163
VII. GRAPE POLYPHENOLS IN HEPATOPROTECTION
Khan S, Ibrahim M. A systematic review on hepatoprotective potential of grape and polyphenolic compounds: molecular mechanism and future prospective. Natural Resources for Human Health. 2023;3(2):196-213.
https://www.nrfhh.com/A-systematic-review-on-hepatoprotective-potential-of-grape-and-polyphenolic-compounds,156261,0,2.html
Abu-Serie MM, Habashy NH. Vitis vinifera polyphenols from seedless black fruit act synergistically to suppress hepatotoxicity by targeting necroptosis and pro-fibrotic mediators. Sci Rep. 2020 Feb 12;10(1):2452
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7016101/
Doaa A. Ali, Nariman K. Badr El-Din, Rania F. Abou-El-magd. Antioxidant and hepatoprotective activities of grape seeds and skin against Ehrlich solid tumor induced oxidative stress in mice. Egyptian Journal of Basic and Applied Sciences, Volume 2, Issue 2, 2015, Pages 98-109.
https://www.sciencedirect.com/science/article/pii/S2314808X15000160
Hassan, H.M.M. Hepatoprotective effect of red grape seed extracts against ethanol-induced cytotoxicity. Glob. J. Biotechnol. Biochem. 2012, 7, 30–37.
https://www.researchgate.net/publication/305688945
Nishiumi, S.; Mukai, R.; Ichiyanagi, T.; Ashida, H. Suppression of lipopolysaccharide and galactosamine-induced hepatic inflammation by red grape pomace. J. Agric. Food Chem. 2012, 60
https://pubmed.ncbi.nlm.nih.gov/22928618/
Dogan A, Celik I. Hepatoprotective and antioxidant activities of grapeseeds against ethanol-induced oxidative stress in rats. British Journal of Nutrition. 2012;107(1):45-51.
https://www.cambridge.org/core/journals/british-journal-of-nutrition/article/
VIII. GRAPE POLYPHENOLS IN GASTROINTESTINAL HEALTH
Murota K, Nakamura Y, Uehara M. Flavonoid metabolism: the interaction of metabolites and gut microbiota. Biosci Biotechnol Biochem. 2018 Apr;82(4):600-610.
https://pubmed.ncbi.nlm.nih.gov/29504827/
Taladrid D, Rebollo-Hernanz M, Martin-Cabrejas MA, Moreno-Arribas MV, Bartolomé B. Grape Pomace as a Cardiometabolic Health-Promoting Ingredient: Activity in the Intestinal Environment. Antioxidants (Basel). 2023 Apr 21;12(4):979.
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10135959/
P. Oteiza, C. Fraga, D. Mills, D. Taft. Flavonoids and the gastrointestinal tract: Local and systemic effects. Molecular Aspects of Medicine (2018)
https://pubmed.ncbi.nlm.nih.gov/29317252/
Sbarra, V.; Ristorcelli, E.; Petit-Thevenin, J.L.; Teissedre, P.L.; Lombardo, D.; Verine, A. In vitro polyphenol effects on activity, expression and secretion of pancreatic bile salt-dependent lipase. Biochim. Biophys. Acta 2005, 1736, 67–76.
https://pubmed.ncbi.nlm.nih.gov/16099206/
M. Pinent, A. Castell-Auví, M.I. Genovese, J. Serrano, A. Casanova, M. Blay, A. Ardévol. Antioxidant effects of proanthocyanidin-rich natural extracts from grape seed and cupuassu on gastrointestinal mucosa Journal of the Science of Food and Agriculture, 96 (1) (2016), pp. 178-182
https://pubmed.ncbi.nlm.nih.gov/25582348/
D.E. Roopchand, R.N. Carmody, P. Kuhn, K. Moskal, P. Rojas-Silva, P.J. Turnbaugh, I. Raskin. Dietary polyphenols promote growth of the gut bacterium Akkermansia muciniphila and attenuate high fat diet-induced metabolic syndrome. .Diabetes (2015)
https://pubmed.ncbi.nlm.nih.gov/25845659/
X. Tzounis, J. Vulevic, G.G. Kuhnle, T. George, J. Leonczak, G.R. Gibson, J.P. Spencer. Flavanol monomer-induced changes to the human faecal microflora. British Journal of Nutrition, 99 (4) (2008), pp. 782-792
https://pubmed.ncbi.nlm.nih.gov/17977475/
IX. GRAPE POLYPHENOLS IN THE IMMUNE SYSTEM
Mamun MAA, Rakib A, Mandal M, Kumar S, Singla B, Singh UP. Polyphenols: Role in Modulating Immune Function and Obesity. Biomolecules. 2024; 14(2):221.
https://www.mdpi.com/2218-273X/14/2/221
Gairola K., Gururani S., Kumar Dubey S. Polyphenols and Its Effect on the Immune System. Nutraceuticals and Functional Foods in Immunomodulators. 2023; (pp.121-140)
https://www.researchgate.net/publication/366755805
Shakoor H, Feehan J, Apostolopoulos V, Platat C, Al Dhaheri AS, Ali HI, Ismail LC, Bosevski M, Stojanovska L. Immunomodulatory Effects of Dietary Polyphenols. Nutrients. 2021 Feb 25;13(3):728.
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7996139/
Alvarez, P.; Alvarado, C.; Puerto, M.; Schlumberger, A.; Jiménez, L.; De la Fuente, M. Improvement of leukocyte functions in prematurely aging mice after five weeks of diet supplementation with polyphenol-rich cereals. Nutrition 2006, 22, 913–921
https://pubmed.ncbi.nlm.nih.gov/16809023/
Hachimura S., Totsuka M., Hosono A. Immunomodulation by food: Impact on gut immunity and immune cell function. Biosci. Biotechnol. Biochem. 2018;82:584–599.
https://pubmed.ncbi.nlm.nih.gov/29448897/
X. GRAPE POLYPHENOLS IN COSMETICS
Boo YC. Human Skin Lightening Efficacy of Resveratrol and Its Analogs: From in Vitro Studies to Cosmetic Applications. Antioxidants 2019;8. https://pubmed.ncbi.nlm.nih.gov/31443469/
Ratz-Łyko A, Arct J. Resveratrol as an active ingredient for cosmetic and dermatological applications: a review. J Cosmet Laser Ther 2019;21:84–90. https://pubmed.ncbi.nlm.nih.gov/29737899/
Wu Y, Jia LL, Zheng YN, Xu XG, Luo YJ, Wang B, et al. Resveratrate protects human skin from damage due to repetitive ultraviolet irradiation. J Eur Acad Dermatol Venereol 2013;27:345–50.
https://pubmed.ncbi.nlm.nih.gov/22221158/
Brinke AS to, Janssens-Böcker C, Kerscher M. Skin Anti-Aging Benefits of a 2% Resveratrol Emulsion. Journal of Cosmetics, Dermatological Sciences and Applications 2021;11:155–68.
https://www.researchgate.net/publication/352517726
Mamalis A, Koo E, Jagdeo J. Resveratrol Prevents Reactive Oxygen Species-Induced Effects of Light-Emitting Diode-Generated Blue Light in Human Skin Fibroblasts. Dermatol Surg. 2016 Jun;42(6):727-32.
https://pubmed.ncbi.nlm.nih.gov/27176863/
Mamalis A, Koo E, Isseroff RR, Murphy W, Jagdeo J. Resveratrol Prevents High Fluence Red Light-Emitting Diode Reactive Oxygen Species-Mediated Photoinhibition of Human Skin Fibroblast Migration. PLoS One. 2015 Oct 21;10(10):e0140628.
https://pubmed.ncbi.nlm.nih.gov/26488596/
Khanna, S.; Roy, S.; Bagchi, D.; Bagchi, M.; Sen, C.K. Upregulation of oxidant-induced VEGF expression in cultured keratinocytes by a grape seed proanthocyanidin extract. Free Radic. Biol. Med 2001, 31, 38–42.
https://pubmed.ncbi.nlm.nih.gov/11425488/
Bae J., Kim N., Shin Y., Kim S., Kim Y. Activity of catechins and their applications. Biomedical Dermatology. 2020; 4(1): 8. doi: 10.1186/s41702-020-0057-8. https://biomeddermatol.biomedcentral.com/articles/10.1186/s41702-020-0057-8
Bice S Martincigh, Moses A Ollengo. The Photostabilizing Effect of Grape Seed Extract on Three Common Sunscreen Absorbers. Photochem Photobiol. 2016 Nov;92(6):870-884. doi: 10.1111/php.12652.
https://pubmed.ncbi.nlm.nih.gov/27759892/
XI. GRAPE POLYPHENOLS AS NUTRACEUTICALS
P. B. Gollucke, Andrea; C. Peres, Rogerio; A. Jr, Odair; A. Ribeiro, Daniel. Polyphenols: A Nutraceutical Approach Against Diseases. Recent Patents on Food, Nutrition & Agriculture, Volume 5, Number 3, 2013, pp. 214-219(6)
https://pubmed.ncbi.nlm.nih.gov/24294942/
Vasil Georgiev *, Anthony Ananga and Violeta Tsolova. Recent Advances and Uses of Grape Flavonoids as Nutraceuticals. Nutrients 2014, 6, 391-415. https://pubmed.ncbi.nlm.nih.gov/24451310/
Lin, J.K.; Weng, M.S. Flavonoids as Nutraceuticals. In The Science of Favonoids; Grotewold, E., Ed.; Springer: Berlin, Germany, 2006; pp. 213–238.
https://www.researchgate.net/publication/226150010_Flavonoids_as_Nutraceuticals
Nassiri-Asl, M.; Hosseinzadeh, H. Review of the pharmacological effects of Vitis vinifera (grape) and its bioactive compounds. Phytother. Res. 2009, 23, 1197–1204. https://pubmed.ncbi.nlm.nih.gov/19140172/
Raj, N.K.; Sripal, R.M.; Chaluvadi, M.R.; Krishna, D.R. Bioflavonoids classification, pharmacological, biochemical effects and therapeutic potential. Indian J. Pharmacol. 2001, 33, 2–16.
https://www.researchgate.net/publication/255635160
Tomé-Carneiro, J.; Gonzálvez, M.; Larrosa, M.; Yáñez-Gascón, M.; García-Almagro, F.; Ruiz-Ros, J.; Tomás-Barberán, F.; García-Conesa, M.; Espín, J. Grape resveratrol increases serum adiponectin and downregulates inflammatory genes in peripheral blood mononuclear cells: A triple-blind, placebo-controlled, one-year clinical trial in patients with stable coronary artery disease. Cardiovasc. Drugs Ther. 2013, 27, 37–48.
https://pubmed.ncbi.nlm.nih.gov/23224687/
Magyar K., Halmosi R., Palfi A., Feher G., Czopf L., Fulop A., Battyany I., Sumegi B., Toth K., Szabados E. Cardioprotection by resveratrol: A human clinical trial in patients with stable coronary artery disease. Clin. Hemorheol. Microcirc. 2012;50:179–187.
https://pubmed.ncbi.nlm.nih.gov/22240353/
Tomé-Carneiro J., Gonzálvez M., Larrosa M., Yáñez-Gascón M.J., García-Almagro F.J., Ruiz-Ros J.A., García-Conesa M.T., Tomás-Barberán F.A., Espín J.C. One-year consumption of a grape nutraceutical containing resveratrol improves the inflammatory and fibrinolytic status of patients in primary prevention of cardiovascular disease. Am. J. Cardiol. 2012;110:356–363. https://pubmed.ncbi.nlm.nih.gov/22520621/
Morillas-Ruiz J, Zafrilla P, Almar M, Cuevas MJ, López FJ, Abellán P, et al. The effects of an antioxidant-supplemented beverage on exercise-induced oxidative stress: results from a placebo-controlled double-blind study in cyclists. Eur J Appl Physiol. 2005;95(5–6):543–9. https://pubmed.ncbi.nlm.nih.gov/16132121/
Sadowska-Krępa E, Barbara Kłapcińska E, Kimsa RK. Effects of supplemetation with red grape skin polyphenolic extract and interval swimming test on the blood antioxidant status in healthy men. Med Sport. 2008;12(1):1–7.
https://www.researchgate.net/publication/215899781
Skarpańska-Stejnborn A, Basta P, Pilaczyńska-Szczesniak Ł, Horoszkiewicz-Hassan M. Blackgrape extract supplementation attenuates blood oxidative stress in response to acute exercise. Biol Sport. 2010;27(1):41–6.
https://www.researchgate.net/publication/47402473
Taghizadeh M, Malekian E, Memarzadeh MR, Mohammadi AA, Asemi Z. Grape seed extract supplementation and the effects on the biomarkers of oxidative stress and metabolic profiles in female volleyball players: A randomized, double-blind, placebo-controlled clinical trial. Iran Red Crescent Med J. 2016;18(9):e31314.
https://pubmed.ncbi.nlm.nih.gov/28144458/
Lafay S, Jan C, Nardon K, Lemaire B, Ibarra A, Roller M, et al. Grape extract improves antioxidant status and physical performance in elite male athletes. J Sports Sci Med. 2009;8(3):468–80.
https://pubmed.ncbi.nlm.nih.gov/24150013/
Elejalde, E., Villarán, M.C. & Alonso, R.M. Grape polyphenols supplementation for exercise-induced oxidative stress. J Int Soc Sports Nutr 18, 3 (2021). https://pubmed.ncbi.nlm.nih.gov/33413451/
Gollücke AP, Ribeiro DA. Use of grape polyphenols for promoting human health: a review of patents. Recent Pat Food Nutr Agric. 2012 Apr 1;4(1):26-30. https://pubmed.ncbi.nlm.nih.gov/22316271/
XII. GRAPE POLYPHENOLS IN THE FOOD INDUSTRY
Zhou D-D, Li J, Xiong R-G, Saimaiti A, Huang S-Y, Wu S-X, Yang Z-J, Shang A, Zhao C-N, Gan R-Y, et al. Bioactive Compounds, Health Benefits and Food Applications of Grape. Foods. 2022; 11(18):2755.
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9497968/
Gollücke AP. Recent applications of grape polyphenols in foods, beverages and supplements. Recent Pat Food Nutr Agric. 2010 Jun;2(2):105-9. PMID: 20653555.
https://pubmed.ncbi.nlm.nih.gov/20653555/
S.G. Sáyago-Ayerdi, A. Brenes, I. Goñi. Effect of grape antioxidant dietary fiber on the lipid oxidation of raw and cooked chicken hamburgers. LWT – Food Science and Technology, 42 (5) (2009), pp. 971-976.
https://www.researchgate.net/publication/223773131
Bhagya Jagadiswaran, Vishvaa Alagarasan, Priyadharshini Palanivelu, Radhika Theagarajan, J.A. Moses, C. Anandharamakrishnan. Valorization of food industry waste and by-products using 3D printing: A study on the development of value-added functional cookies. Future Foods, Volume 4, 2021, 100036, ISSN 2666-8335.
https://www.sciencedirect.com/science/article/pii/S2666833521000265
Kandylis, P., Dimitrellou, D., Moschakis, T. Recent applications of grapes and their derivatives in dairy products. Trends in Food Science & Technology. Volume 114, August 2021, Pages 696-711
https://www.researchgate.net/publication/351987591
S. Kulkarni, F.A. DeSantos, S. Kattamuri, S.J. Rossi, M.S. Brewer. Effect of grape seed extract on oxidative, color and sensory stability of a pre-cooked, frozen, re-heated beef sausage model system Meat Science, 88 (1) (2011), pp. 139-144. https://pubmed.ncbi.nlm.nih.gov/21193269/
M. Rojas, M. Brewer. Effect of natural antioxidants on oxidative stability of cooked, refrigerated beef and pork Journal of Food Science, 72 (4) (2007), pp. S282-S288. https://pubmed.ncbi.nlm.nih.gov/17995791/
Cagdas E, Kumcuoglu S. 2014. Effect of grape seed powder on oxidative stability of precooked chicken nuggets during frozen storage. J Food Sci Technol 52:2918–25.
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4397317/
Cappa C, Lavelli V, Mariotti M. 2015. Fruit candies enriched with grape skin powders: physicochemical properties. LWT – Food Sci Technol 62:569–75.
https://www.researchgate.net/publication/271269604
Chouchouli V, Kalogeropoulos N, Konteles SJ, Karvela E, Makris DP, Karathanos VT. 2013. Fortification of yoghurts with grape (Vitis vinifera) seed extracts. LWT – Food Sci Technol 53:522–9
https://www.researchgate.net/publication/256804688
G. Jayaprakasha, R. Singh, K. Sakariah. Antioxidant activity of grape seed (Vitis vinifera) extracts on peroxidation models in vitro. Food Chemistry, 73 (3) (2001), pp. 285-290
https://www.researchgate.net/publication/222629817
XIII. GRAPE POLYPHENOLS IN THE FOOD INDUSTRY
Llobera A and Canellas J, Dietary fibre content and antioxidant activity of Manto Negro red grape (Vitis vinifera): pomace and stem. Food Chem 101:659–666 (2007).
https://www.researchgate.net/publication/248510581
Llobera A and Canellas J, Antioxidant activity and dietary fibre of Prensal Blanc white grape (Vitis vinifera) by-products. Int J Food SciTechnol 43:1953–1959 (2008).
https://www.researchgate.net/publication/229958357
Mildner-Szkudlarz S, Zawirska-Wojtasiak R, Szwengiel A and Pacynski M, Use of grape by-product as a source of dietary fibre and phenolic compounds in sourdough mixed rye. Int J Food Sci Technol 46:1485–1493 (2011). https://www.researchgate.net/publication/230247759
Perez-Jimenez J, Serrano J, Tabernero M, Arranz S, Dıaz-Rubio ME, Garcıa-Diz L, et al. Effects of grape antioxidant dietary fiber in cardiovascular disease risk factors. Nutrition 24:646–653 (2008). https://pubmed.ncbi.nlm.nih.gov/18485668/
M. Champ et al. Structural and physical properties of dietary fibres, and consequences of processing on human physiology. April 2000 Food Research International 33(3-4):233-245.
https://www.researchgate.net/publication/222130777
Chedea, V.S.; Tomoiaga, L.L.; Macovei, S.O.; Magureanu, D.C.; Iliescu, M.L.; Bocsan, I.C.; Buzoianu, A.D.; Vosloban, C.M.; Pop, R.M. Antioxidant/pro-Oxidant actions of polyphenols from grapevine and wine by-Products-Base for complementary therapy in ischemic heart diseases. Front. Cardiovasc. Med. 2021, 8, 750508. https://pubmed.ncbi.nlm.nih.gov/34805304/
Antonic, B.; Jancikova, S.; Dordevic, D.; Tremlova, B. Grape pomace valorization: A systematic review and meta-Analysis. Foods 2020, 9, 1627.
https://pubmed.ncbi.nlm.nih.gov/33171832/
Cilli, L.P.; Contini, L.R.F.; Sinnecker, P.; Lopes, P.S.; Andreo, M.A.; Neiva, C.R.P.; Nascimento, M.S.; Yoshida, C.M.P.; Venturini, A.C. Effects of grape pomace flour on quality parameters of salmon burger. J. Food Process. Preserv. 2020, 44, e14329. https://www.researchgate.net/publication/337466788
Jianmei Yu; Ahmedna M. Functional components of grape pomace: their composition, biological properties and potential applications. International Journal of Food Science and Technology 2013, 48, 221–237. https://www.researchgate.net/publication/263571233
Dwyer K.; Hosseinian F.; Rod M. The Market Potential of Grape Waste Alternatives. Journal of Food Research Archives Vol. 3, No. 2 (2014).
https://www.researchgate.net/publication/261212837_The_Market_Potential_of_Grape_Waste_Alternatives
Theagarajan, R., Malur L., Dutta, S., Moses J.A., Chinnaswamy A. (2019). Valorisation of grape pomace (cv. Muscat) for development of functional cookies. Int. J. Food Sci. Technol. 54(4), 1299-1305
https://www.researchgate.net/publication/330962124
Maner, S., Sharma, A.K. & Banerjee, K. Wheat Flour Replacement by Wine Grape Pomace Powder Positively Affects Physical, Functional and Sensory Properties of Cookies. Proc. Natl. Acad. Sci., India, Sect. B Biol. Sci. 87, 109–113 (2017).
https://www.researchgate.net/publication/279652476_Wheat_Flour_Replacement_by_Wine_Grape_Pomace_Powder_Positively_Affects_Physical_Functional_and_Sensory_Properties_of_Cookies
Karnopp, A.R., Figueroa, A. M., Los, P.R., Teles, J. C., Simões, D.R., Barana, A.C., Kubiaki, F.T., Baggio de Oliveira, J.G., Granato, D. Effects of whole-wheat flour and bordeaux grape pomace (Vitis labrusca L.) on the sensory, physicochemical and functional properties of cookies. Food Sci. Technol (Campinas) 35 (4), Oct-Dec 2015
https://www.researchgate.net/publication/292816936_Effects_of_whole-wheat_flour_and_bordeaux_grape_pomace_Vitis_labrusca_L_on_the_sensory_physicochemical_and_functional_properties_of_cookies
Acun, Sultan & Gül, Hülya. (2014). Effects of grape pomace and grape seed flours on cookie quality. Quality Assurance and Safety of Crops & Foods. 6. 81-88. 10.3920/QAS2013.0264. https://www.researchgate.net/publication/275976854_Effects_of_grape_pomace_and_grape_seed_flours_on_cookie_quality
Rainero, G., Bianchi, F., Rizzi, C., Cervini, M., Giuberti, G., Simonato, B. (2021). Breadstick fortification with red grape pomace: effect on nutritional, technological and sensory properties. Jounal of the Science of Food and Agriculture. 10.1002/jsfa.11596. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9298127/
Ortega-Heras M, Gómez I, de Pablos-Alcalde S, González-Sanjosé ML. Application of the Just-About-Right Scales in the Development of New Healthy Whole-Wheat Muffins by the Addition of a Product Obtained from White and Red Grape Pomace. Foods. 2019; 8(9):419. https://pubmed.ncbi.nlm.nih.gov/31533219/
Walker, R., Tseng, A., Cavender, G., Ross, A., Zhao, Y. Physicochemical, Nutritional, and Sensory Qualities of Wine Grape Pomace Fortified Baked Goods. Journal of Food Science. 79(9), 2014, Pages S1811-S1822. https://pubmed.ncbi.nlm.nih.gov/25102950/
Nakov, G., Brandolini, A., Hidalgo, A., Ivanova, N., Stamatovska, V., Dimov, I. Effect of grape pomace powder addition on chemical, nutritional and technological properties of cakes. LWT. Food Science and Technology. Volume 134, 2020, 109950, ISSN 0023-6438.
https://www.researchgate.net/publication/343533721_Effect_of_grape_pomace_powder_addition_on_chemical_nutritional_and_technological_properties_of_cakes
Mildner-Szkudlarz, S., Bajerska, J., Zawirska-Wojtasiak, R., Górecka D. White grape pomace as a source of dietary fibre and polyphenols and its effect on physical and nutraceutical characteristics of wheat biscuits. Jounal of the Science of Food and Agriculture. 93(2). 2013. Pages 389-395. https://pubmed.ncbi.nlm.nih.gov/22806270/
Bursa, K., Kilicli, M., Toker, O.S., Palabiyik, I., Gulcu, M., Yaman, M., Kian-Pour, N., Konar, N. Formulating a nd studying compound chocolate with adding dried grape pomace as a bulking agent, Journal of Food Science and Technology, 10.1007/s13197-021-05180-8, (2021) https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9046511/
Bolenz, S., Glöde, L. Technological and nutritional aspects of milk chocolate enriched with grape pomace products. Eur Food Res Technol 247, 623–636 (2021).
https://www.researchgate.net/publication/346773706
Acan B. G., Kilicli, M., Bursa, K., Toker, O.S., Palabiyik, I., Gulcu, M., Yaman, M., Gunes, R., Konar, N. Effect of grape pomace usage in chocolate spread formulation on textural, rheological and digestibility properties. LWT. Volume 138, March 2021, 110451
https://www.researchgate.net/publication/344900415
de Arruda Nascimento, E., de Almeida E., Arroxelas Galvão de Lima, V.L., (2018) Ice Cream with Functional Potential Added Grape Agro-Industrial Waste, Journal of Culinary Science & Technology, 16:2, 128-148. https://www.researchgate.net/publication/319364758
Demirkol, M., Tarakc, Z. Effect of grape (Vitis labruscaL.) pomace dried by different methods onphysicochemical, microbiological and bioactive properties of yoghurt. LWT – Food Science and Technology. 97 (2018) 770 – 777.
https://www.researchgate.net/publication/326792163
Marchiani R., Bertolino, M. , Belviso, S., Giordano, M., Ghirardello, D., Torri, L., Piochi, M. Zeppa, G. Yogurt Enrichment with Grape Pomace: Effect of Grape Cultivar on Physicochemical, Microbiological and Sensory Properties. Journal of Food Quality. 39(2). 2016. Pages 77-89. https://onlinelibrary.wiley.com/doi/abs/10.1111/jfq.12181
A. Tseng, Y. Zhao. Wine grape pomace as antioxidant dietary fibre for enhancing nutritional value and improving storability of yogurt and salad dressing. Food Chemistry 138 (2013) 356–36
https://pubmed.ncbi.nlm.nih.gov/23265499/
Gaglio, R.; Restivo, I.; Barbera, M.; Barbaccia, P.; Ponte, M.; Tesoriere, L.; Bonanno, A.; Attanzio, A.; Di Grigoli, A.; Francesca, N.; Moschetti, G.; Settanni, L. Effect on the Antioxidant, Lipoperoxyl Radical Scavenger Capacity, Nutritional, Sensory and Microbiological Traits of an Ovine Stretched Cheese Produced with Grape Pomace Powder Addition. Antioxidants 2021, 10, 306.
https://www.researchgate.net/publication/349378757
Marchiani, R., Bertolino, M., Ghirardello, D., McSweeney, P.L.H., Zeppa, G. Physicochemical and nutritional qualities of grape pomace powder-fortified semi-hard cheeses. J Food Sci Technol. 2016 Mar; 53(3): 1585–1596.
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4984727/
Frumento D., do Espirito Santo, A.P., Aliakbarian, B., Casazza, A., Gallo, M., Converti, A., Perego, P. Fermented Milk Fortified with Marc Flour. Food Technol. Biotechnol. 51 (3) 370–375 (2013)
https://www.researchgate.net/publication/259820765
Cilli, L., Ferreira, L., Sinnecker, P., Santos, P., Adriano., M., Rodrigues, C., Silva, M., Yoshida, C.M.P., Venturini, C. Effects of grape pomace flour on quality parameters of salmon burger. Journal of Food Processing and Preservation. 44(2). 2020. e14329. https://www.researchgate.net/publication/337466788
Abdelhakam, O., Elsebaie, E., Ghazi, A., Gouda, M. Quality characteristics of beef hamburger enriched with red grape pomace powder during freezing storage. Slov Vet Res 2019; 56 (Suppl 22): 333–40
https://www.researchgate.net/publication/331792453
Inés Urquiaga I., Troncoso, D., Mackena M.J., Urzúa, C., Pérez, D., Dicenta, S., de la Cerda, P.M., Amigo, L., Carreño, J.C., Echeverría G., Rigotti, A. The Consumption of Beef Burgers Prepared with Wine Grape Pomace Flour Improves Fasting Glucose, Plasma Antioxidant Levels, and Oxidative Damage Markers in Humans: A Controlled Trial. Nutrients. 2018, Vol. 10 Issue 10, p1388. 1p. https://pubmed.ncbi.nlm.nih.gov/30275350/
Ryu, K.S., Shim, K.S., Shin, D. Effect of Grape Pomace Powder Addition on TBARS and Color of Cooked Pork Sausages during Storage. Korean J Food Sci Anim Resour. 2014; 34(2): 200–206.
https://pubmed.ncbi.nlm.nih.gov/26760939/
Valeria Marinelli, V., Padalino, L., Conte, A., Alessandro Del Nobile, M.A., Briviba, K. Red Grape Marc Flour as Food Ingredient in Durum Wheat Spaghetti: Nutritional Evaluation and Bioaccessibility of Bioactive Compounds. Food Science and Technology Research. 2018. 24(6). p. 1093-1100
Sant’Anna, V., Porta, F.D., Ferreira, L.D., Tessaro, I.C., Cruz, R. The effect of the incorporation of grape marc powder in fettuccini pasta properties. LWT – Food Science and Technology. Volume 58, Issue 2, October 2014, Pages 497-501
https://www.researchgate.net/publication/262570773
XIV. THE ROLE OF GRAPE POLYPHENOLS IN SUGAR METABOLISM
D. Martínez-Maqueda, B. Zapatera, A. Gallego-Narbón, M. P. Vaquero, F. Saura-Calixto, J.Pérez-Jiménez. A 6-week supplementation with grape pomace to subjects at cardiometabolic risk ameliorates insulin sensitivity, without affecting other metabolic syndrome markers. Food Funct. Issue 11, 2018.
https://pubs.rsc.org/en/content/articlelanding/2018/fo/c8fo01323c
D. Taladrid, M. de Celis, I. Belda, B. Bartolomé, M. V. Moreno-Arribas. Hypertension- and glycaemia-lowering effects of a grape-pomace-derived seasoning in high-cardiovascular risk and healthy subjects. Interplay with the gut microbiome. Food Funct., 2022,13, 2068-2082 https://pubs.rsc.org/en/content/articlelanding/2022/fo/d1fo03942c
K. B. Pandey, S. I. Rizvi. Role of red grape polyphenols as antidiabetic agents. Integrative Medicine Research. Volume 3, Issue 3, September 2014, Pages 119-125 https://www.sciencedirect.com/science/article/pii/S2213422014000419
Taladrid D, Rebollo-Hernanz M, Martin-Cabrejas MA, Moreno-Arribas MV, Bartolomé B. Grape Pomace as a Cardiometabolic Health-Promoting Ingredient: Activity in the Intestinal Environment. Antioxidants (Basel). 2023 Apr 21;12(4):979. https://pmc.ncbi.nlm.nih.gov/articles/PMC10135959/
G. Costabile, M. Vitale, D. Luongo, D. Naviglio, C. Vetrani, P. Ciciola, A. Tura, F. Castello, P. Mena, D. Del Rio, B. Capaldo, A. Rivellese, G. Riccardi, R. Giacco. Grape pomace polyphenols improve insulin response to a standard meal in healthy individuals: A pilot study. Clinical Nutrition. Volume 38, Issue 6, December 2019, Pages 2727-2734
https://www.sciencedirect.com/science/article/abs/pii/S0261561418325615
S. Dzah, D. Asante‑Donyinah, E. Letsyo, J. Dzikunoo, Z. Suglo Adams. Dietary Polyphenols and Obesity: A Review of Polyphenol Efects on Lipid and Glucose Metabolism, Mitochondrial Homeostasis, and Starch Digestibility and Absorption. Plant Foods for Human Nutrition. November 2022.
https://www.sochob.cl/web1/wp-content/uploads/2022/12/Dietary-Polyphenols-and-Obesity
S. Bartova, F. Madrid-Gambin, L. Fernandez, J. Carayol, E. Meugnier, B.Segrestin, P. Delage, N. Vionnet, A. Boizot, M. Laville, H. Vidal, S. Marco, J. Hager, S. Moco. Grape polyphenols decrease circulating branched chain amino acids in overfed adults. Front. Nutr., 25 October 2022. Volume 9 – 2022
https://www.frontiersin.org/journals/nutrition/articles/10.3389/fnut.2022.998044/full
Zhu X, Wu C, Qiu S, Yuan X, Li L. Effects of resveratrol on glucose control and insulin sensitivity in subjects with type 2 diabetes: systematic review and meta-analysis. Nutr Metab (Lond). 2017 Sep 22;14:60.
https://pmc.ncbi.nlm.nih.gov/articles/PMC5610395/
Sapwarobol S, Adisakwattana S, Changpeng S, Ratanawachirin W, Tanruttanawong K, Boonyarit W. Postprandial blood glucose response to grape seed extract in healthy participants: A pilot study. Pharmacogn Mag. 2012 Jul;8(31):192-6.
https://pmc.ncbi.nlm.nih.gov/articles/PMC3466453/
Buljeta I, Pichler A, Šimunović J, Kopjar M. Beneficial Effects of Red Wine Polyphenols on Human Health: Comprehensive Review. Curr Issues Mol Biol. 2023 Jan 17;45(2):782-798 https://pmc.ncbi.nlm.nih.gov/articles/PMC9955827/
Hokayem M, Blond E, Vidal H, Lambert K, Meugnier E, Feillet-Coudray C, Coudray C, Pesenti S, Luyton C, Lambert-Porcheron S, Sauvinet V, Fedou C, Brun JF, Rieusset J, Bisbal C, Sultan A, Mercier J, Goudable J, Dupuy AM, Cristol JP, Laville M, Avignon A. Grape polyphenols prevent fructose-induced oxidative stress and insulin resistance in first-degree relatives of type 2 diabetic patients. Diabetes Care. 2013 Jun;36(6):1454-61.
https://pmc.ncbi.nlm.nih.gov/articles/PMC3661802/